A reduced basis localized orthogonal decomposition

نویسندگان

  • Assyr Abdulle
  • Patrick Henning
چکیده

In this work we combine the framework of the Reduced Basis method (RB) with the framework of the Localized Orthogonal Decomposition (LOD) in order to solve parametrized elliptic multiscale problems. The idea of the LOD is to split a high dimensional Finite Element space into a low dimensional space with comparably good approximation properties and a remainder space with negligible information. The low dimensional space is spanned by locally supported basis functions associated with the node of a coarse mesh obtained by solving decoupled local problems. However, for parameter dependent multiscale problems, the local basis have to computed repeatedly for each choice of the parameter. To overcome this issue, we propose an RB approach to compute in an “offline” stage LOD for suitable representative parameters. The online solution of the multiscale problems can then be obtained in a coarse space (thanks to the LOD decomposition) and for an arbitrary value of the parameters (thanks to a suitable “interpolation” of the selected RB). The online RB-LOD has a basis with local support and leads to sparse systems. Applications of the strategy to both linear and nonlinear problems are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localized Model Reduction in Porous Media Flow

This paper introduces a new localized approach to construct an efficient reduced order model for fluid flow simulation and optimization in porous media flow. For nonlinear systems, one of the most common methodology used is the proper orthogonal decomposition (POD) combined with discrete empirical interpolation method (DEIM) due to its computational efficiency and good approximation. Whereas re...

متن کامل

Extension Ability of Reduced Order Model of Unsteady Incompressible Flows Using a Combination of POD and Fourier Modes

In this article, an improved reduced order modelling approach, based on the proper orthogonal decomposition (POD) method, is presented. After projecting the governing equations of flow dynamics along the POD modes, a dynamical system was obtained. Normally, the classical reduced order models do not predict accurate time variations of flow variables due to some reasons. The response of the dynam...

متن کامل

Trust-region Proper Orthogonal Decomposition for Flow Control

The proper orthogonal decomposition (POD) is a model reduction technique for the simulation of physical processes governed by partial differential equations, e.g. fluid flows. It can also be used to develop reduced order control models. Fundamental is the computation of POD basis functions that represent the influence of the control action on the system in order to get a suitable control model....

متن کامل

Reduced Order Modeling of Aviation Environmental Design Tool with Proper Orthogonal Decomposition and Kriging

A high fidelity simulation is preferred for its remarkable accuracy for engineering problems. However, it requires long computational time, which leads to significant overhead and eventually hinders its application to design study. To overcome such impediments, a reduced-order method is utilized. Reducedorder method can effectively represent a simulation output as a linear combination of a basi...

متن کامل

Proper Orthogonal Decomposition Technique for Transonic Unsteady Aerodynamic Flows

A new method for constructing reduced-order models (ROM) of unsteady small-disturbance  ows is presented. The reduced-order models are constructed using basis vectors determined from the proper orthogonal decomposition (POD) of an ensemble of small-disturbance frequency-domain solutions. Each of the individual frequencydomain solutions is computed using an efŽ cient time-linearized  ow solver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 295  شماره 

صفحات  -

تاریخ انتشار 2015